*

*

Bài 9. Biến hóa các biểu thức hữu tỉ. Quý hiếm của phân thức

A. Lý thuyết

1. Biểu thức hữu tỉ

+ Một nhiều thức được gọi là 1 trong biểu thức nguyên

+ Một biểu thức chỉ chứa các phép toán cộng, trừ, nhân , chia và chứa biến ở chủng loại được hotline là biểu thức phân

Các biểu thức nguyên với biểu thức phân được gọi thông thường là biểu thức hữu tỉ.

Bạn đang xem: Biến đổi các biểu thức hữu tỉ

Ví dụ: Các biểu thức hữu tỉ như: 

*

2. Chuyển đổi một biểu thức hữu tỉ thành một phân thức

Nhờ những quy tắc của phép toán cộng, trừ, nhân, chia những phân thức ta tất cả thể đổi khác các biểu thức hữu tỉ thành một phân thức.

Ví dụ: Biến thay đổi biểu thức 

*
thành một phân thức

Hướng dẫn:

Ta có:

*

*

3. Giá trị của phân thức

Các bài toán liên quan đến quý hiếm của phân thức

+ Trước tiên, tìm điều kiện của biến chuyển để giá bán trị khớp ứng của mẫu mã thức khác 0.

+ quý hiếm phân thức được khẳng định thì ta rút gọn thống kê giám sát phân thức.

Ví dụ: Cho phân thức:

*

a) Tìm đk để phân thức bên trên xác định.

b) Tính quý hiếm của phân thức tại

Hướng dẫn:

a) Điều kiện để phân thức khẳng định là (x + 1)(x - 2) ≠ 0 ⇒ x ≠ - 1; x ≠ 2.

b) quý hiếm của phân thức tại x = 1

Ta có: 

*

B. Một số trong những dạng toán hay gặp

Dạng 1: biến hóa biểu thức hữu tỉ thành phân thức. Rút gọn gàng biểu thức mang đến trước

Phương pháp: Ta sử dụng các quy tắc cộng, trừ, nhân, chia những phân thức để biến hóa một biểu thức hữu tỉ thành phân thức.

Xem thêm: Facebook Bổ Sung Tính Năng ' Nhúng Bài Viết Là Gì, Nhúng Bài Viết Trên Facebook Là Gì

Dạng 2: Tính cực hiếm của phân thức

Phương pháp:

Bước 1: kiếm tìm điều kiện xác định của phân thức

Bước 2: nắm giá trị của biến chuyển (thỏa mãn điều kiện) vào phân thức rồi tính.

Dạng 3: những bài toán tổng hợp